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Abstract-The heat transfer characteristics for natural convection about an isothermal vertical cylinder 
with surface mass transfer (blowing or suction) have been determined by analysis. The problem was 
formulated by applying the local nonsimilarity method, and solutions were obtained by a numerical 
scheme which employs integrated forms of the governing differential equations. Numerical solutions were 
carried out for a wide range of values of parameters which respectively characterize the transverse 
curvature of the cylinder and the magnitude and sign of the surface mass transfer. The Prandtl number 
was varied between 0.01 and 10. It was found that the local Nusselt numbers for a vertical cylinder are 
less sensitive to surface mass transfer than are those for a vertical plate. The sensitivity of both the 
cylinder and the plate Nusselt numbers to the mass transfer is diminished at low Prandtl numbers and 

increased at high Prandtl numbers. 

NOMENCLATURE Greek symbols 

reduced stream function, equation (6); 
velocity function, aF/ag ; 
acceleration of gravity ; 
velocity function, at/a< ; 
local heat transfer coefficient, q/( r, - T,) ; 
computational quantity, equation (32); 
computational quantity, equation (33); 
thermal conductivity; 
surface mass transfer parameter, 
equation (13) ; 
local Nusselt number, hx/k; 

N+,, flat plate Nusselt number; 

Nusselt number for no surface mass 
transfer; 
coefficients in governing equations ; 
Prandtl number; 
right-hand sides of governing equations; 
local heat flux per unit time and area; 
radial coordinate; 
radius of cylinder; 
temperature; 
surface temperature; 
ambient temperature; 
streamwise velocity; 
transverse velocity ; 
transverse velocity at surface; 
axial coordinate. 

thermal diffusivity ; 
thermal expansion coefficient ; 
pseudo-similarity variable, equation (4); 
dimensionless temperature, 

(T- T,)/(T,- T,); 
prototype temperature function, 
equation (18) ; 
kinematic viscosity; 

transformed streamwise coordinate, 
equation (5); 
temperature function, CM/?<; 
temperature function, a4/ag ; 
stream function ; 
prototype velocity function, equation (17). 

NIP, 

p, 
f+, 

Q> 
4, 

r, 
ro, 
T, 
T wi 
T co) 
u, 
11, 

V W? 

X. 

INTRODUCTION 

THE EFFECTS of surface mass transfer (blowing and 
suction) on natural convection adjacent to a vertical 
plate have been subjected to extensive study [l-9] 
and are now well understood. Basic to the results is 
the thickening (by blowing) or thinning (by suction) 
of the boundary layer that is caused by the surface 
mass transfer. The key role played by these changes 
in boundary layer thickness suggests that the flat 
plate results will not carry over to other cases where 
the layer thickness is either more or less responsive. 
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A case in point is the vertical cylinder, and the focus 
of the present paper is to study the effects of mass 
transfer on natural convection adjacent to such a 
geometry. Specific consideration is given to a 
cylinder whose surface is isothermal and to mass 
transfer that is uniformly distributed along the 
surface. 

It is well established that in the absence of surface 
mass transfer, the natural convection boundary layer 
on a vertical cylinder is thinner than that on a 
vertical plate. This characteristic stems from the 
finite transverse curvature of the cylinder surface. It 
can be reasoned that the mechanisms which give rise 
to the thinner boundary layer on the cylinder will 
also alter the responsiveness of the boundary layer 
thickness to surface mass transfer. Consequently, it 
can be expected that the cylinder heat transfer 
results, when ratioed for the cases with and without 
surface mass transfer, will differ from the correspond- 
ing ratio for the flat plate. 

Natural convection adjacent to an isothermal 
vertical cylinder does not admit a similarity-type 
boundary layer solution [lo], and this state of affairs 

continues to prevail in the presence of surface mass 
transfer. To solve the latter problem, the local non- 
similarity solution method is used here. This method, 
first described in [ 111, has been employed to good 
effect for many non-similarity boundary layer pro- 
blems, for example [12-141. The main attributes of 
the method are that (a) solutions are obtainable at 
any given axial station without reference to other 
stations, (b) accuracy verifications can be made 
internal to the method, and (c) the equations that 
have to be solved are ordinary differential equations 
of the similarity type. 

Numerical solutions of the governing differential 
equations generated by applying the local non- 

similarity method are obtained by employing a 
solution scheme described in [9]. That scheme is 
based on the use of integrated forms of the governing 
equations which incorporate the given boundary 
conditions. In order to make the solution scheme 
more effective in dealing with relatively thick 

boundary layers (e.g. low Prandtl number fluids), a 
modification of the scheme has been adopted here, as 

will be described later. 
An examination of the governing equations and 

boundary conditions indicates the presence of three 
prescribable parameters: (a) the transverse curvature 
parameter <, (b) the surface mass transfer parameter 
M, and (c) the Prandtl number. Solutions were 
carried out for 5 values of 1, 2, and 5. All of these 
correspond to significant curvature effects as wit- 
nessed by the fact that for the no mass transfer case 
[lo], the corresponding local heat transfer coef- 
ficients are 1.4, 1.75, and 2.65 times the flat plate 
value for Pr z 0.7. For completeness, results for 
5 = 0 (flat plate), including surface mass transfer, are 
also presented (these results are borrowed from [9]). 
For each 5 value, the surface mass transfer parameter 
M was assigned values to cover the range from - 2.4 

to 2.4, with positive M denoting blowing and 
negative M denoting suction. Finally, at each 5 and 
M, results were obtained for Prandtl numbers of 
0.01, 0.72, 1, 2, 5, and 10. 

It is relevant to note that the present results for 
M = 0 constitute an extension of the available 
information for natural convection on an isothermal 
vertical cylinder without mass transfer. Previously 
published solutions [lo] for this case had been 
limited to Pr = 0.7. 

The results of the solutions are presented in both 

graphical and tabular form. The graphs, which 
correspond to representative Prandtl numbers, are 
plotted in terms of Nusselt number ratios to clearly 
portray mass transfer induced deviations from a 
reference state. In one set of graphs, the cylinder 
Nusselt numbers with and without mass transfer are 
ratioed at a fixed curvature and then plotted as a 
function of the mass transfer parameter. These 
graphs show the direct effect of the mass transfer on 
the Nusselt number for a given curvature. In a 
second set of graphs, the cylinder and flat plate 
Nusselt numbers are ratioed at a succession of fixed 
values of the mass transfer parameter. This com- 
parison indicates the relative sensitivities of the 
cylinder and the flat plate to surface mass transfer. 

The tables provide a listing of the dimensionless 
temperature and velocity derivatives at the cylinder 
surface for all of the cases that were investigated. 

ANALYSIS 

Problemformulation 

The governing conservation equations for the 
velocity and temperature fields are expressed in 
cylindrical coordinates in which x, the axial coor- 
dinate, is vertically upward. The boundary layer 
form of these equations for a constant property fluid 
(with a linear density-temperature relationship for 
the buoyancy term) is 

k (vu) + $ (rli) = 0 

al4 c:U 

Uu+l.-=yB(T-TJ+;; r; 
SX ?r ’ ( I 1 

(2) 

(3) 

Although these equations do not admit a simi- 
larity solution for the case of an isothermal vertical 
cylinder, it is advantageous to introduce a pseudo- 
similarity variable VJ along with a stretched axial 
coordinate t as follows 

v~ = (g/?(T, - T,)r$4v2)‘1” 

x (r’/rg - 1)/2(x/ro)“4 (4) 

5 = 2(x/r,)“4/(gj?(Tw- T,)r$4vZ)“4 (5) 

where T, and T, respectively denote the wall and 
ambient temperatures, and r0 is the radius of the 
cylinder. The motivation for employing the trans- 
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formation (4),(S) is that the transformed con- 
servation equations are much less dependent on the 
axial coordinate than are the original conservation 
equations. 

To supplement the coordinate transformation 
given by equations (4) and (5), the dependent 
variables (velocities and temperature) are transfor- 
med by 

$ = 4vr0(x/r0)314 

x (gB(L- L)r;/4vZ)““FK a) (6) 

(T- TX(T,- T*) = @(5, V) (7) 

where ru = a$/&, ru = - a$/&. 
When the transformation is applied to equations 

(2) and (3) there results 

((1 f&)F”)‘+3FF”- 2(F’)’ +B 

= l(F‘aF’/a< - F”aF/at) 

(l/Pr)((l + &)B’)‘+ 3FB 

= 4 (F’%j@ - B’dF/d<) 

in which ’ = i?/av. In equations (8) and (9), 

(8) 

(9) 

the 
presence of both < and q, as well as of derivatives in 
both these coordinates, confirms that similarity was 
not achieved by the transformation. 

Attention will now be turned to the boundary 
conditions. The surface mass transfer will be ex- 
pressed via the transverse velocity v, at the surface of 
the cylinder, with blowing characterized by v, > 0 
and suction by t), < 0. For uniform surface mass 
transfer, which is the case considered here, u,‘, is 
constant. The other boundary conditions are that 
u = 0 and T = T, at the cylinder surface and that 
u = 0 and T = T, in the ambient fluid. After 
transformation, the boundary conditions become 

at g = 0: F = - (1/6)~~(~~r~/v) c2<(aF/~?t)) (10) 

F’=o, @=l (11) 

atq=co:F’=O, f3=0. (12) 

The quantity (u,r,Jv) is a dimensionless group 
which characterizes the magnitude and sign of the 
surface mass transfer. It may also be noted that the 
product t(v,r,/v) is independent of rg and can, 
therefore, be employed as a surface mass transfer 

parameter for both the cylinder and the flat plate. 
Indeed, $<(u,rJv) was used in the flat plate studies 
reported in [7] and [9]. In view of the filial 
relationship between the ftat plate and the cylinder 
and of the comparisons that will be made between 
the results of the two cases, &(u,r,/v) will be 

employed here to characterize the surface mass 
transfer. This group will be denoted by M, so that 

M = +&,r,/v) 

= (U,~~~V~/(~~(~~_ T,)x3/4vz)1’4. (13) 

Solution 
As noted earlier, the solution of equations (8) and 

(9) subject to the boundary conditions (lo)-(12) will 

be obtained by applying the local nonsimilarity 
method. This method is well documented in the 
literature (see references cited in the Introduction) 
and need not be described here in detail. The basic 
aim of the method is to avoid having to solve the F, 0 
partial differential equations which govern the 
nonsimilarity problem by eliminating derivatives in 
5. When the elimination is performed in the F,U 

equations themselves, then the method reduces to 
local similarity. However, the thrust of method is to 
delete 5 derivatives from equations that are sub- 
sidiary to the F, B equations, thereby leaving the F. t) 
equations fully intact. The phrase lecel ~~tr~~~atio~l 
is used to describe where the c derivatives are 
eliminated. 

With regard to the problem at hand, the first level 
of truncation (i.e. local similarity) corresponds to the 
deletion of the right-hand sides of equations (8) and 
(9) and of the term ?F/S< in equation (10). The 
resulting equations are free of 5 derivatives and may 
be treated as ordinary differential equations of the 
boundary layer type, with r and $(a,r,/v) = M 
regarded as parameters. 

To prepare for the second level of truncation, new 

unknowns G = aFj?l and # = S?,/Z< are introduce, 
respectively in equations (8)-(10) and in equation 
(9). With these insertions, equations (8))(12) are 
retained without approximation. Additional equa- 
tions to cover the new unknowns G and Cp are 
generated as follows: Firstly, equation (8) (with G 
included) is differentiated with respect to 5, and the 
term ~/~~~~G’-~‘G) is deleted. Then. the < de- 
rivative of equation (9) (with 4 included) is carried 

out, and a/@(F’d - Q’G) is deleted. Next, the boun- 
dary condition (10) (with G included) is differen- 
tiated, and C?G/L:[ is deleted. Finally, the < derivatives 
of the other boundary conditions (11) and (12) are 
taken. These operations provide an additional set of 
equations for G and d, which have to be solved 
simultaneously with equations (8)-(12). 

The equations corresponding to higher levels of 

truncation are generated by extending the procedure 
described in the foregoing. In the present study, 
solutions were obtained at the third level of 
truncation inasmuch as previous work on related 
problems has indicated high accuracy at that level. 

For the third level equations, additional functions 
H = ~3G/c7{ = a2F/3t2 and x = &/a[ = a20/@ are 

introduced to supplement F, G, N, md 4. 
The surface mass transfer boundary condition (10) 

represents a special feature of the present study and, 
therefore, it is appropriate to show the forms which 
it takes at the various levels of truncation. At the 
first, second, and third levels, respectively 

F= -M/3 (14) 

F = -M/4, G = -M/45 (15) 

F= -M/4, G= -M/45, H=O (16) 

where M is given by equation (13). 
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The numerical scheme described in [9] was 
employed here to solve the sets of differential 
equations that were generated by the local non- 
similarity method. The scheme is based on restating 
the differential equations in integrated form in such a 

way that the boundary conditions are already 
satisfied. To accomplish the restatement, the differen- 
tial equations for the velocity functions (i.e. F, G. H, 

) are expressed in the form 

0”’ + PJ1” = Qn (17) 

while those for the temperature functtons (0, 4, x, .) 
are written as 

A” + P, A’ = QA. (18) 

Thus, for example, at the third level of truncation 

F”’ -t P,F” = Qf. 0” + P,O’ = Q,, (19) 

G”‘+P,G” = Qc, ~“+P& = Qs (20) 

H”’ + P,H” = QH, f + P,x’ = Q, (21) 

where 

P, = P, = (3F+5+5G)/(1+5’~7) (22) 

P, = (3F+5)/(1+&) (23) 

P,, = P, = (3PrF+<+Pr<G)/(l -t(n) (24) 

P, = (3PrF+<)/(l+<q) (25) 

QF = (2(F’)“-@+<F’G’)/(l +(a) (26) 

QG = (5F’G’-4F”G-qF”‘-F”-4 

+<(F’H’+(G’)2-F”H))/(l +&) (27) 

QH = (6F’H’ - 5F”H + 6(G’)’ 

-(~G+~)G”-~v/G”‘-x)/(~ +@I) (28) 

Q,, = PrSF’N(I + 5~) (29) 

Q+ = (PrF’d - 4PrGH’ - qfl” - 0’ 

+~rg(F’il+G’~-O’H))/(l+r’l) (30) 

Q, = (2PrF’x + 2Prc$G’- (8PrG +‘2)4’ 

-2~4”-SPrO’H))(l +<q). (31) 

Once the P and Q functions and the boundary 
conditions have been identified, all of the necessary 
inputs are available to employ the numerical scheme 
of [9]. The description of the scheme given in [9] is 
sufficiently complete so that there is no need for 
reiteration here. It is, however, appropriate to 
describe a modification that was introduced here in 
order to circumvent difficulties which arise at large 5 
values such as those that are encountered in the low 
Prandtl number flows and/or at large 5. 

In the numerical scheme, the following integrals 

have to be evaluated 

I,(=) = exp[- j: P,(?)dil 

Jn(;) = exp[j: Pn(?)dil 

(32) 

(33) 

and similarly for I, and J,. If P is positive and z is 
large, it is seen from equation (33) that exp will take 
on tremendous values-values that are well beyond 
the capacity of a computer. 

To avoid this difficulty, a term whose original 
form was 

I*(v) IS ,’ Qn(fi)Jn(l*l) dT? I (34) 

is rewritten as 

(35) 

and the IJ product evaluated as 

I,(v)J,(4) 

= exp[ - !“I P,(rj)d$ + 1’ P,(q)dil. (36) 

Because of the competition between the two contri- 
buting terms, the argument of exp in equation (36) is 
always sufficiently small so that exp never overflows. 

For q values where overflow is not an issue, much 
less computational time is required to evaluate 
equation (34) than to evaluate equation (35). 
Therefore, to minimize the overall expenditure of 
computer time, equation (34) was employed for all r~ 
values except for those where overflow would have 
occurred, and for those u values (35) was employed. 
The break point between the use of equations (34) 
and (35) was identified from auxiliary evaluations of 
equation (33), which established whether or not 
overflow occurred and, if overflow did occur, the 
corresponding r~ value was determined. For the 
majority of the cases treated here, it was possible to 
employ equation (34) in the calculations. 

RESULTS AND DLSCUSSLON 

The numerical solutions were carried out for wide 
ranges of the three prescribable parameters 5, Pr, 
and M. For 5, solutions were obtained for values of 
1, 2, and 5. The results from these solutions will be 
supplemented by those for < = 0 from [9] in order to 
span the entire range from no transverse curvature 
(5 = 0) to appreciable transverse curvature (5 = 5). 
For the Prandtl number Pr, values of 0.01. 0.72, 1. 2, 
5, and 10 were employed. Except for Pr = 10, values 
of the mass transfer parameter A4 equal to -2.4, 
- 1.6, -0.8, 0, 0.8, 1.6, and 2.4 were assigned. Owing 
to the rapid drop off of the heat transfer with 
increasing positive A4 at Pr = IO, solutions were 
obtained for a somewhat finer subdivision of M 
between 0 and 1.2, and the M = 1.6 and 2.4 cases 
were not run. 

The main focus of the presentation of results will 
be the local heat transfer coefficient h and its 
dimensionless counterpart, the local Nusselt number, 
respectively defined as 
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Table 1. Values of -O’(&O) for the third level of truncation 

Pr 

I449 

5 M 0.01 0.72 1.0 2.0 5.0 10.0 

0.0 - 2.4 
- 1.6 
-0.8 

0.0 
0.8 
1.6 
2.4 

1.0 - 2.4 
- 1.6 
-0.8 

0.0 
0.8 
1.6 
2.4 

2.0 - 2.4 
- 1.6 
-0.8 

0.0 
0.8 
1.6 
2.4 

5.0 -2.4 
-1.6 
-0.8 

0.0 
0.8 
1.6 
2.4 

0.9230( - l)* 1.746 
0.8849( - 1) 1.247 
0.8460( - 1) 0.8311 
0.8056( - 1) 0.5046 
0.7631(- 1) 0.2701 
0.7182(- 1) 0.1221 
0.6713(- 1) 0.04421 

0.2563 1.845 
0.2523 1.401 
0.2483 1.020 
0.2441 0.7067 
0.2398 0.4616 
0.2354 0.2814 
0.2309 0.1585 

0.3987 1.966 
0.3947 1.551 
0.3906 1.189 
0.3864 0.8829 
0.3822 0.6321 
0.3779 0.4347 
0.3734 0.2861 

0.7932 2.344 
0.7892 1.973 
0.7851 1.638 
0.7810 1.342 
0.7768 1.083 
0.7726 0.8599 
0.7684 0.6719 

2.404 4.800 12.00 24.00 
1.657 3.204 8.000 16.00 
1.035 1.744 4.012 8.000 
0.5671 0.7165 0.9540 1.169 
0.2604 0.2011 0.7126( - 1) 0.1046(-l) 
0,094oo 0.03323 0.1067(-2) 0.1670t 
0.02461 0.2648( - 2) 0.2058( - 5) 0.2604( - 3): 

2.457 4.801 12.00 24.00 
1.786 3.244 8.000 16.00 
1.218 1.896 4.056 8.001 
0.7716 0.9257 1.169 1.388 
0.4472 0.3634 0.1584 0.3363( - 1) 
0.2334 0.1099 0.8770( - 2) 0.2832t 
0.1078 0.02446 0.1880(-3) 0.2301(-2): 

2.550 4.813 12.00 24.00 
1.923 3.319 8.000 16.00 
1.387 2.050 4.128 8.004 
0.9516 1.113 1.365 1.590 
0.6171 0.5213 0.2604 0.7033( - 1) 
0.3758 0.2068 0.2713(- 1) 0.4079t 
0.2134 0.06833 0.1550(-2) 0.8230( - 2): 

2.884 4.960 12.00 24.00 
2.329 3.622 8.03 1 16.00 
1.841 2.493 4.43 1 8.067 
1.422 1.607 1.889 2.134 
1.072 0.9666 0.6035 0.2422 
0.7881 0.5405 0.1441 0.7998t 
0.5640 0.2804 0.2617( - 1) 0.6008( - 1): 

*0.9230(- 1) = 0.9230 x lo-‘. 
tM = 0.4. 
$M = 1.2. 

where 4, the local heat flux, is given by 

4 = k(L- T,) 

x (sB(T,-T,)/4xv2)1’4(-,,(5, 0)). (38) 

By combining equations (37) and (38), there follows 

NM = (-Q’(<, 0))(Gr/4)“4 (39) 

where Gr is the local Grashof number 

gB(K- T,)x3/v2. 
The dimensionless temperature derivative at the 

cylinder surface, Q’(<, 0), which is the key quantity in 
the heat transfer results, depends on all three of the 
prescribable parameters, 5, M, and Pr. A listing of 
the f3’(&0) values obtained from the solutions at the 
third level of truncation is presented in Table 1. In 
the table, the 5 and M parameters are respectively 
indicated in the first and second columns of the table 
while the parametric values of the Prandtl number 
are deployed across the top of the table. 

To clearly portray the effects of surface mass 
transfer, the Nusselt number results will be presented 
graphically in ratio form with respect to certain 
reference quantities. One of the reference quantities is 
the Nusselt number Nu* for the case of no surface 
mass transfer, that is 

Nu = NM* for M = 0. (40) 

The other reference quantity is the flat plate Nusselt 

number, 

Nu = NC+, for 5 = 0. (41) 

With these reference quantities, two ratios will be 
formed. The first, Nu/Nu*, compares the Nusselt 
numbers with and without surface mass transfer for a 
fixed value of the curvature parameter 5 and at a 
given Prandtl number. The second ratio is NM/NM,,. 
It compares the cylinder and flat plate Nusselt 
numbers at the same value of the surface mass 
transfer parameter and at the same Prandtl number. 

The Nu/Nu* results are presented in Figs. 1 and 2. 
The first of these figures conveys results for 
Pr = 0.01 (upper graph) and for Pr = 0.72 (lower 
graph), while the second figure is for Pr = IO. These 
Prandtl numbers span the full range that was 
investigated here. In each figure, Nu/Nu* is plotted 
as a function of the mass transfer parameter M. The 

range of M in Fig. 1 extends from -2.4 (strong 
suction) through zero (no surface mass transfer) to 
2.4 (strong blowing). In Fig. 2, the abscissa range 
was truncated at M = 0.8 because of the rapid drop- 
off of NuJNu* for positive M at Pr = 10. The curves 
are parameterized by the transverse curvature 5. 

Since NuJNu* = 1 when M = 0, the departure of 

the curves from unity is a direct measure of the effect 
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FIG. I. 

f , 1 

Pr=O.Ol 

3 

0 
-2.4 1.6 -0.8 0.0 0.8 1.6 2.4 

M=( V,X/Y)/(gb(T,-T,)X3/4?]~4 

Comparison of Nusselt numbers with and without surface mass transfer for fixed values 
curvature parameter, Pr = 0.01 and 0.72 

3- 

\ 

\ 

Pr =lO 

-2.4 -1.6 -0.8 0 

M= (bx/y )/[gfi(T,-T,d’4~*~ 

II 

1.8 

of the 

FIG. 2. Comparison of Nusselt numbers with and without surface mass transfer for fixed values of the 
curvature parameter, Pr = 10. 
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FE. 3. Comparison of cylinder and flat plate Nusselt numbers, Pr = 0.01 

of surface mass transfer on the local heat transfer 
coefficient. As expected, suction (M < 0) increases 
the transfer coefficient and blowing (M > 0) de- 
creases the transfer coefficient. Apart from this 
qualitative characteristic which is common to all 
cases, the extent of the mass transfer influence is 
markedly different depending on the Prandtl number 
and on the curvature parameter. At Pr = 0.01, Fig. 1 
shows that at any fixed curvature 5, the Nusselt 
number is only slightly affected by surface mass 
transfer. With increasing Prandtl number, the in- 
fluence of surface mass transfer becomes more 
marked so that at Pr = 0.72 and, even to a greater 
extent at Pr = 10, there are major variations of 
NulNu* with M. 

It is also seen from Figs. 1 and 2 that the role of 
transverse curvature is amplified with increasing 
Prandtl number. Whereas at Pr = 0.01 the curves for 
the various 5 values fall so close together that some 
had to be omitted to preserve clarity, there is a 
notable spread among the curves at higher Prandtl 
numbers. In general, the smaller the 5 value, the 
greater is the effect of surface mass transfer. Thus, the 
flat plate Nusselt numbers are most sensitive to 
surface mass transfer and those for small diameter 
cylinders are least sensitive. 

The important role of the Prandtl number that 
was identified in the foregoing appears plausible 
when note is taken of the large variations of the 
boundary layer thickness with Prandtl number. In low 
Prandtl number fluids, the boundary layer is very 

KM, ?? 10 I 

thick and, as a consequence, the surface mass 
transfer only affects the inner part of the boundary 
layer. On the other hand, the thermal boundary 
layer for natural convection in high Prandtl number 
fluids is very thin, and the entire boundary layer is 
strongly affected by the surface mass transfer. 

The lesser sensitivity of the cylinder to surface 
mass transfer (compared with the flat plate) is also 
physically plausible. To provide further perspectives 
about the relationship between the cylinder and the 
flat plate, Figs. 3, 4, and 5 have been prepared, 
respectively, for Pr = 0.01, 0.72, and 10. In each 
figure, the Nu/Nu,, ratio is plotted as a function of 
the mass transfer parameter M, and the curves are 
labeled according to the curvature parameter l. In 
the ratio, both Nu and Nu,, correspond to the same 
value of M. 

From an overview of these figures, it is seen that 
for all cases, the ratio of the cylinder Nusselt number 
to that for the flat plate is larger in the presence of 
blowing than in the presence of suction. The 
differences between the Nu/Nu,, ratios for blowing 
and suction become more marked as the Prandtl 
number increases. For Pr = 0.01, Nu/Nu,, is ge- 
nerally large (i.e. well in excess of unity) for both 
suction and blowing, and there is only a modest 
increase as M increases. On the other hand, for 
higher Prandtl numbers, the cylinder and flat plate 
Nusselt numbers are very nearly the same for a range 
of suction values. This range grows wider with 
increasing Prandtl number, as witnessed by the line 
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FIG. 4. Comparison of cylinder and flat plate Nusselt n~n~~rs, I+ = 0.72. 
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FIG. 5. Comparison of cylinder and fiat plate Nusselt numbers, Pr = 10. 
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Table 2. Values off”(5, 0) for the third level of truncation 
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5 M 0.01 0.72 1.0 2.0 5.0 

0.0 -2.4 1.953 0.5568 0.4139 0.2083 0.8322( - l)* 0.4166( - 1) 
- 1.6 1.613 0.6689 0.5497 0.3106 0.1250 0.6249( - 1) 
-0.8 1.286 0.7095 0.6368 0.4722 0.2461 0.1250 

0.0 0.9872 0.6760 0.6422 0.5712 0.4818 0.4192 
0.8 0.7328 0.5920 0.5824 0.5689 0.5668 0.5725 
1.6 0.5351 0.4873 0.4881 0.4934 0.5015 0.1670t 
2.4 0.3962 0.3875 0.3899 0.3944 0.3971 0.2604( - 3): 

1.0 - 2.4 1.975 0.7396 0.5722 0.2627 0.9089( - 1) 
- 1.6 1.654 0.7844 0.6649 0.4004 0.1427 
-0.8 1.352 0.7771 0.7030 0.5343 0.2930 

0.0 1.078 0.7271 0.6886 0.6083 0.5084 
0.8 0.8412 0.6482 0.6338 0.6118 0.6042 
1.6 0.6459 0.5556 0.5544 0.5593 0.5736 
2.4 0.4940 0.4627 0.4666 0.4773 0.4873 

0.4348( - 1) 
0.6665( - 1) 
0.1416 
0.4395 
0.6111 
0.2832t 
0.2301(-2)f 

2.0 - 2.4 1.993 0.8450 0.6809 0.3363 0.9986( - 1) 
- 1.6 1.694 0.8559 0.7389 0.4718 0.1650 
-0.8 1.414 0.8307 0.7549 0.5828 0.3338 

0.0 1.159 0.7755 0.7328 0.6441 0.5343 
0.8 0.9342 0.7001 0.6810 0.6504 0.6357 
1.6 0.7425 0.6140 0.6098 0.6110 0.6279 
2.4 0.5854 0.5262 0.5295 0.5425 0.5596 

0.4544( - 1) 
0.7123( - 1) 
0.1608 
0.4594 
0.6419 
0.4079-F 
0.8230( - 2)$ 

5.0 - 2.4 2.070 1.038 0.8803 0.5217 0.1379 
- 1.6 1.816 1.012 0.8944 0.6235 0.2525 
-0.8 1.577 0.9677 0.8849 0.6996 0.4337 

0.0 1.356 0.9087 0.8548 0.7432 0.6073 
0.8 1.155 0.8390 0.8079 0.7529 0.7149 
1.6 0.9746 0.7627 0.7483 0.7328 0.7454 
2.4 0.8163 0.6839 0.6810 0.6888 0.7177 

0.5220( - 1) 
0.8831(- 1) 
0.2277 
0.5161 
0.7142 
0.7998t 
0.6008( - 1): 

10.0 

*0.8322( - 1) = 0.8322 x lo- ‘. 
t M = 0.4. 
fM = 1.2. 

Nu/Nu,, = 1 which represents the results for most of 

the negative M values in Fig. 5. Furthermore, for 
these higher Prandtl numbers, the curves rise sharply 
in the presence of blowing and attain high values of 
Nu/Nur,. The sharpness of the rise is accentuated 
when the curvature of the cylinder is greater (i.e. 
higher e). 

In interpreting the results of Figs. 3-5, it should be 
noted that both Nu and Nu,, decrease with 
increasing M. Since Nu/Nu,, increases with M, it 
follows that Nu,, decreases more rapidly than does 
Nu. This confirms the conclusion already drawn 
from Figs. 1 and 2 that the flat plate is more sensitive 
to surface mass transfer than is the cylinder. This 
difference in sensitivity occurs because the annular 

boundary layer surrounding a cylinder can disperse 
and diffuse injected fluid more readily than can a 
plane boundary layer and, similarly, it can give up 
withdrawn fluid with lesser disruption. The ability to 
accommodate injected fluid is especially important at 
higher Prandtl numbers, where it serves to stave off 
the catastrophic decrease in Nusselt number with 
increased blowing that occurs for the flat plate. 

To close the presentation of results, special 
attention may be called to the tabulated values of 
0’(&0) for M = 0 and 5 > 0. These results cor- 
respond to cylinders without surface mass transfer. 

In view of the fact that the only previously published 
results for the isothermal cylinder were limited to 
Pr N 0.7 [lo], the Q’(t,O) values given in Table 1 for 
other Prandtl numbers constitute new information. 
For completeness, the numerical values of F”(<,O) 
are listed in Table 2. In certain methods of solution, 
F”(<,O) and Q’(<,O) are key quantities because they 
are starting values in a forward numerical 
integration. 

CONCLUDING REMARKS 

The solutions obtained here provide further 
confirmation of the effectiveness of the local non- 
similarity method for solving boundary layer prob- 

lems. Special note should be taken, however, of the 
important role played by the adopted numerical 
scheme in the actual attainment of the solutions, 

This scheme, which is based on the use of integrated 
forms of the governing differential equations, yielded 
solutions for all of the selected parameter values, 
without undue difficulties being encountered. To 
cope with computer overflow which would have 
occurred in the solutions for thick boundary layers, a 
modification of the numerical scheme was devised 
and described in the paper. 

The results of the analysis demonstrated that the 
local Nusselt numbers for a vertical cylinder are less 
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INTERACTION ENTRE LE TRANSFERT MASSIQUE A LA SURFACE ET LA COURBURE 
TRANSVERSALE DANS LES COUCHES LIMITES DE CONVECTION NATURELLE 

R&sum&On ditermine ana~ytiquel~lent les caract~rist~ques du transfert thermique par convection 
naturelie autour d’un cylindre vertical isotherme avec transfert massique (soufftage ou aspiration). Le 
problime est formult en appliquant la mkthode de non-similitude locale et les solutions sont obtenues par 
une mkthode numbrique qui emploie des formes intigrees des kquations aux derivtes partielles. Des 

solutions num&iques sont obtenues pour un large domaine de variation des paramttres qui caractkrisent 
la courbure transversale du cylindre, et la grandeur et le signe du transfert massique i la surface. Le 
nombre de Prandtl varie entre 0,OI et IO. On trouve que le nombre de Nusselt local pour un cylindre 
vertical est moins sensible au transfert massique que pour une plaque verticale. La sensibilitt, au transfert 
massique, des nombres de Nusselt pour le cylindre et pour la plaque est diminuee aux faibles nombres de 

Prandtl et augmentte pour les forts nombres de Prandtl. 

WECHSELWIRKUNG ZWISCHEN STOFFOBERGANG AN DER OBERFLACHE UND 
DEREN KRijMMUNG IN QUERRICHTUNG IN GRENZSCHICHTEN BE1 FREIER 

KONVEKTION 

~usammenfassung~Das W~rme~ber~a~gsverhaiten an einem isothermen vertikalen Zyiinder mit 
Stoffiibergang an der Oberfllche (Ausblasen oder Absaugen) ist rechnerisch bestimmt worden. Das 
Problem wurde mit Hilfe der Methode ijrtlicher Nichtahnlichkeit formuliert. Man erhielt LCisungen 
mittels eines numerischen Verfahrens, bei welchem die integrierte Form der beschreibenden Differential- 
gleichungen verwendet wurde. Numerische Lijsungen wurden fiir einen we&en Bereich van Parametern 
ermittelt, w&he die Querkr~mmung des Zylinders sowie GriiBe und Vorzeichen des Stoff~bergangs an 
der Oberflgche charakterisieren. Die Prandtl -Zahl wurde zwischen 0,Oi und 10 variiert. Es zeigte sich, 
da0 die ijrtlichen N&It-Zahlen fiir einen vertikalen Zylinder weniger stark vom Stoffiibergang 
abhlngen, als das bei einer ebenen Platte der Fall ist. Die Abhhngigkeit der NuBelt-Zahlen vom 
Stoffiibergang nimmt sowohl beim Zylinder als such bei der ebenen Platte mit niedrigen Prandtl-Zahlen 

ab und steigt mit hohen. 

B3AMMOflEtiCTBME MEXAY ZEPEHOCOM MACCbI HA IIOBEPXHOCTM M 
IlOnEPErlHOfi KPMBM3HOti B ECTECTBEHHOKOHBEKTMBHblX IlOl-PAHMqHbIX 

cno5lx 

AHHOT~UWR--- AHaflHTFiWCKBM nyT@M Onp%!feJleltbI XapaKTepffCTWKff IIepeHOCa ren:la CCTeCTBewHOl? 

KotiseKuHeii y HsoTepMtiVecKoro aepT8KanbHoro uen~nnpa npur HanHqMM nepeHoca Maccbl ~a ero 
nosepxnocr8 (anye wnu 0Tcoc). 3airaua c+opuynwposaHa c noM0mL.m MeTofla noaanbwoii HeaaTo- 
~o~~~~n~~~. EC peute~ur ~o~y~e"b, C ~cno~b3o~H~eM WCJleHHOfi CXeMbi H HrrTerpanbHbiX *Opll- 

UCXOUHblX ~~~~e~H~~aJlbHbiX ypZ$BifeHffii. ~NCifeHffbtii paC+?T ffpOBeifeH IUS tllRPOKOr0 flffana30Ha 

3Ha~eHW~Ila~aMeTpOB.Xa~KTepW3yK)UIHXCOO+Be~~BeHHO~OIl~~~Hy~K~#aH3Hy UHXlln,lpa.a TaKHEe 

semfwHy H HanpdBneHHe Macconeperfoca Ha ffOBepXHoCTH. q!4cJla npdHIfTm HmfeHllJfMCb 0T 0.01 
fi0 10. HaiiaeHo. YTO ,fOKa,fbHbfe 3Ha'feHLfII 'fWCJla HyCCCJfbTa il.lR BepT&fKa;lbHOrO Wfi,ff"+~~d. no 

cpaaffeffsfo c f3epTwKanbffoii nnacTmok hfeftbufe ?PB~~C~CRT 0T wpefioca Maccbf tfa noeepxHoc_ru. 3Ta 
3aBRCNMOCTb fjU,R a~~~ff~~ II &"ff fl~aCT~Hbf) W,fa6."WTCR C y~feHb~eH~eM 3Ha'feHWR qRC.-fa 

npaHAT.M w ycifnffeaercrc C ero POCTOM. 


